Chapter 7

Elementary examples in two
electron systems

We now have the machinery to calculate some useful matrix elements in the two
electron case.
The following Hamiltonians will be discussed

i) Hy=C-1/r (electrostaticinteraction)
i) Hgo=Y;Csil; (spin — orbitinteraction)
iii) Hey=C 1Yy, (crystalfieldinteraction)
iv) H,, =pgB(L,+2S,) (Zeemaneffect)

7.1 The electrostatic interaction

The electrostatic interaction between two charged particles is essentially described by
the 1/r12 operator, where 15 is the distance between the two particles, see figure 1.6
below.
fig 6.
Using the addition theorem for spherical harmonics we can write the 1/r5 operator
as
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r is the shorter of r; and r9, and - is the larger. We note from Eq. (7.1) that the
angular part has a familiar form and that the two operators act on different systems
(two different electrons), c.f. the previous section. The proof of the addition theorem
for spherical harmonics can be found in for example Arfken [2] “Mathematical Methods
for Physicists” or Edmonds [11] “Angular Momentum in Quantum Mechanics”.

Because the operator Eq. (7.1) does not depend on the spin (quantum number
S) and does commute with the total angular momentum L, it is a wise choice to
work in the SLMgM;-representation. (In atomic physics the names LS-coupling and
Russell-Saunders coupling are frequently used).
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The matrix elements take the form

(Ll L'S" My ME|(C - SN, LS ML M) = 85156310101 L0 01, ¥

L Lk
(—1)’1”2“{ bbb }<m\OY“)\\ll><le0§’”wz>, (7.2)

ae®in = ( g 5 o) (7.3

where the Egs. (6.25) and (6.13) have been used. The sum in Eq. (7.1) could appear
rather bothersome but because of the 3j-symbol in Eq. (7.3) we see that k£ has the
following constraints

ogkgm} (7.4)

k even

We also note see from Eq. (7.1) that the radial and angular parts of the operator
has been separated which means that an actual calculation simplifies considerably.
The matrix elements are My Mg independent, thus we have a spherically symmetric
Hamiltonian. Moreover, Eq. (7.2) gives us a matrix which is diagonal, and split the
configuration into states characterized by L and S, the so called terms. The term
symbol that commonly is used is

25, (7.5)

The obvious question that immediately arise is how many terms can Eq. (7.2) split for a
given configuration, 7.e. how many terms do we have for a given electron configuration.
We have two distinct cases to begin with. i) The system is made up from non-equivalent
electrons, and ii) the system is made up of equivalent electrons.

We begin with looking at a configuration of two non-equivalent p-electrons, i.e.
the configuration npn'p. The possible values of L, S, M;, and Mg are:

L=[1-1|,...,141=0,1,2
S=1[1/2-1/2],...,1/2+1/2=0,1
ML:—2,...,2

Mg =—1,0,1

(7.6)

We now construct a My Mg table to be able to identify the different terms.

Table MLMS

Starting in the upper left corner it is seen that the only term that can be in this
state is D (1 1 1 1). This term (3D) will contribute with one state to each box in
the table. The next box to the right has two states, one from *D and and one from
the only other available namely 'D. 'D will contribute with one state to all singlet
(11), ({1) boxes. The M, = 2, Mg = —1 box already has its state from 3D. The
M Mg = 11 box need one more state which only can come from 3P (and this term will
contribute with one state to the 11, 1-1, 01, 00, -11,-10 and -1-1 boxes). Continuing
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this reasoning we see that all 36 ((3*2)(3*2)) states can be accounted for with the
3D,'D,3P,'P,3S and 'S terms. Thus, we see that the 1/r;, operator (electrostatic
interaction) will split the npn'p configuration into six different eigenstates.

Next we look at two equivalent p-electrons. The Pauli-exclusion principle will now
reduce the number of states in the table because for example (111 1) and (0 | 0 |) are
both forbidden. We also realize that the order in which the states appear in the table
does not matter when we deal with equivalent electrons so for example (1 1+ —1 1) is
the same as (—1 7 1 1), and one of the has to be removed. The same reasoning as
in the non-equivalent electron case now obviously lead to the terms !D, 3P and 'S.
We conclude that the electrostatic interaction will split a system of two equivalent
p-electrons into three levels (eigenstates).

7.2 The spin-orbit interaction

The sin-orbit operator is essentially /;-s; and in the JM-representation a typical matrix
element take the form

(YL'S'TM'|l;- 5,y LSTM) = 6M1M6Ju(—1>”5'”{ S 57 }

2 (YLl L) &y S [l vS) (7.7)
,),II

where we have used Eq. (6.25) with £ = 1. The delta function and the 6j-symbol in
Eq. (7.7) give us the following selection rules for the spin-orbit matrix element,

AM =0

AJ =0

AS =0, +1 (7.8)
AL =0,+1

As for the electrostatic interaction, the matrix elements of the spin-orbit operator
is independent of the quantum number M, i.e. the situation is spherically symmetric.
The effect of this operator is to split up the terms into multiplets (fine structure)
characterized by J. The term symbol can be used to describe these multiplets provided
we add the J quantum number

2L, (7.9)

Because J =|L —S|,...,L+ S the 2L + 1 (or 25 + 1 depending on if L > S or not)
degeneracy is lifted by the spin-orbit interaction.
7.3 The crystal-field interaction

So far both interaction studied have been spherically symmetric and therefore the
corresponding matrix elements have not been dependent on the quantum numbers
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My, Mg or Mj. In this section the effects of the crystal field will be discussed, and by
this we mean the effect of the other ions in the system. Our Hamiltonian is no longer
spherically symmetric (c.f. a site with for example cubic symmetry) and we should
therefore expect M dependent matrix elements.

The crystal field Hamiltonian can be written

Hep = —ey ApgriYeq(0:0:) (7.10)
ikq
where 7 run over all ions in the system and A, are the so called crystal field param-
eters. It should be noted that Eq. (7.10) represent only the most simple and naive
parameterizations of the crystal field. There exist more sophisticated models, e.g. cor-
related crystal field models. The book by Ng and Newman [10] (2000) “Crystal field
handbook” is recommended for the curious reader.
From Eq. (7.10) we see that the radial and the angular parts can be treated
separately. The radial part becomes

(n'l'|rf|nl) (7.11)
and for the angular part we obtain, in M Mg-representation,
Apo(y'S'L'MGMy |Yig|ySLM Mg) = 55,55M,SMS(_1)LI_MIL %

L k L
(b b oz, (7.12)

Once again the power of the Wigner-Eckart theorem can be appreciated. All the M
dependencies has been contained in the 3j-symbol! The 3j-symbol put the following
constraints on Eq. (7.12) for the expression to be non-zero in the case of equivalent
electrons

—M£+Q+ML=0
0<k<2L (7.13)

k even

The reduced matrix elements in Eq. (7.12) is straight forward to evaluate using Eq.
(6.28) when we work with two equivalent electrons. We will later on in the course,
if time permits, look at the techniques needed when we have more then two equiva-
lent electrons. Applying Eq. (7.12) essentially reduce the problem to evaluating the
Gaunt’s coefficients, Eq. (6.10).

So far we have not used the symmetry of the crystal field to reduce the labour
needed in our calculations. At a first glance at Eqs. (7.12) and (7.10) the number
of terms (combinations of kq) seem very large. k is constrained by Eq. (7.13) but
the number of terms is still large. By realizing that also ¢ can be constrained due
to symmetry considerations, we save a lot of computation. The (- dependence for
Yy (0p) is exp(iqp) so for example a crystal field that has trigonal symmetry around
the z-axis must satisfy

2
V(rfp + ?ﬁ) =V (ryp)
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which means that ¢ in this case only takes the values ¢ = 0,+£3,£6,.... Sixfold sym-
metry would give ¢ = 0, %6, ... and fourfold symmetry would give ¢ = 0, £4,£8, .. ..
If we want to investigate an f-electron system in a hexagonal field we do therefore
only have to consider the terms

V = Agr®Yog + Ager*Yye + (Ag—6Ys—6 + ApoYeo + A66Y66)7‘6

The AgyyYyo contribution is spherical and does therefore not contribute to the splitting,
it only move the configuration as a whole.

We conclude by emphasizing that the effect of the crystal field Hamiltonian (Hep)
is to split up the term into energy levels characterized by M,

7.4 The Zeeman effect

From some course in classical physics one might remember that the energy for a dipole
in an external magnetic field (B) is given by

Wp=—u-B (7.14)
Choosing B = BZ and assuming Eq. (7.14) valid also in quantum mechanics, one get
with

p=pp(—L - 25) (7.15)
and

H,, = ugB(L, + 25,) (7.16)

A general matrix element of H,, between two multiplets now becomes trivial to cal-
culate using the machinery developed so far.

(YS'L'J'M'|Hp|ySLIM) = pupB(y'S'L'J' M'|L,|ySLJM)
+ 2upB(yS'L'JM'|S,|ySLJM) (7.17)

By applying the Wigner-Eckart theorem and Eqs. (6.28) and (6.29) we get for the
matrix elements on the right hand side of Eq. (7.17)

J1J

1QITE AL _ (_ 1\ M
('S'L'J'M'|L,|ySLIM) = (—1) (_M, 0 i

>(7’S'L’J'||L||VSLJ> (7.18)

and the reduced matrix element can by simplified to

(fS'TTL|ASLI) = (~1)¥ 54 [J'1[J1{§ ; é}wﬂuuwmys (7.19)

The spin part of the problem is equally straight forward

J1 J

N AR iAY L _ (_1\J M
('S'L'J'M'|S,|ySLIM) = (~1) (_M, .

)(fy’S'L’J'HSHvSLJ) (7.20)
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and the reduced matrix element of S can by simplified to

!
(/S'TT|S|ASLI) = (~1)FH5+T 4 [J'][J]{SJ ; i}W'S'Hsuvsm (7.21)

The reduced matrix elements on the right hand side of Egs. (7.19) and (7.21) are
obtained by noting that

1 _ag! JI 1 J
MMy = 07 (L)) (.22)
where
J’Y"YJJ’;](SM’M
LT,y T M By T M |y J MY
Iy = — T MNVIM)  mh Ty M) (7.23)

J o1 J\ Jo1J
_1\J'—M' N\ =M
] A AT A

For M' = J" and J = M in Eq. (7.22) we get using the Wigner-Eckart theorem

IR r— J' 1 J 7
e G A A LY (7.24)

and the corresponding reduced matrix element is given by

T8 50t na

"I Ty JY = 7.25
I = (7.25)
-J 0 J
Egs. (7.23) and (7.25) give
J 1 J\ M, ,uf J 1J
(—M 0 M>_7(_1) -J 0 J (7.26)
It can also be shown that
J 1 J J
= .27
(—J 0 J) \/(J+1)(2J+1) (7.27)
and Eq. (7.23) therefore finally become
TNy T) =TT +1)(2T +1)8,671 (7.28)

Egs. (7.17), (7.18)-(7.21) and (7.28) put together give us the general expression for
(v'S'L'J’M'|H,,|ySLJM) and the Zeeman problem is solved!



Bibliography

1]

[10]
[11]

H. W. Wyld, Mathematical methods for physics (Addison-Wesley Publishing Com-
pany, Inc., New York, 1976).

G. Arfken, Mathematical methods for physicists (Academic Press, Inc., New York,
1985 ).

G. Racah, Phys. Rev. 62, 438 (1942).

E. U. Condon and G. H. Shortley, The theory of atomic spectra (Cambridge uni-
versity press, London, 1935).

Wigner.

G. Racah, Phys. Rev. 61, 186 (1942).
G. Racah, Phys. Rev. 63, 367 (1943).
G. Racah, Phys. Rev. 76, 1352 (1949).

B. R. Judd, Operator Techniques in Atomic Spectroscopy (McGraw-Hill, New
York, 1963).

D. J. Newman and B. Ng, Crystal Field Handbook.

A. R. Edmonds, Angular Momentum in Quantum Mechanics (Princton University
Press, Princton, 1974).

a0



